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What is deep learning?

Deep learning is a subset of artificial intelligence involving specialized machine
learning algorithms that process numericalized data through several layers of
parameters in order to produce an output. Essentially, the model's output is a
function of the input data.

For example, suppose we have a classification model that can differentiate pears,
bears, and chairs. When we show the model an image, it converts each pixel into three
numbers based on the amount of red, green, and blue it holds. Then, several

mathematical transformations convert the hundreds of input numbers into three final
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probabilities - each corresponding to either “pear”, “bear”, or “chair”. If we show the
model an image of a pear, the [probability image is pear] would be greater than

P(image is bear) or P(image is chair), and we would be returned the label “pear”.



structure of a basic neural network (simplified)
How do models learn?

When it's first created, our pears/bears/chairs model classifies with an average
accuracy of 33% - pure guesswork. This is because the parameters haven’t been
properly initialized to do the correct transformations of the input data, so our
model’s just a huge random number generator at this point. However, if we put the

model into “training mode”, it can improve its accuracy by tweaking its own

parameters - and all we need to do is show it labeled data! But what's actually
happening behind the scenes? As we know, every time we show the model an image,
three probabilities will be outputted. In training mode, we employ a “loss function”
that measures the variance of the expected output from the actual output each time
an image is passed through (expected output will always have a 1.0 in the node with
the same name as the image’s label, and 0.0 in the other two). Each time a loss is
calculated, the model will tweak its parameters accordingly. In our example, when we
showed the model an image of a pear, the nodes for pear, bear, and chair respectively
lit up with the probabilities 0.76, 0.14, and 0.10. When we show the model another
image of a pear after some training, these numbers would hopefully be closer to 1.0,
0, and 0. Essentially, the loss is a

function of the parameters, and the goal of training is to find the parameters

that minimize the loss. This is accomplished through gradient descent.

Knowing all this, it's intuitive that the more data we use for training, the more



chances we have to tweak the network parameters, and the higher our model'’s

accuracy will be. But does that always have to be the case?

What is transfer learning?

“Transfer learning” is a relatively new technique in the field of deep learning by
which one model that's trained to do a particular task is reused and fine-tuned to do
another related task. Instead of beginning with an empty architecture, we start with

a model with almost-correctly initialized parameters that only need minor tweaking.

Why use it?

Compared to empty architectures, pre-trained models require less data to train, have

faster compute times, and generally lead to more robust final models. These

differences become more and more consequential as we move into the realm of big
data. From a more existential standpoint, some experts say that transfer learning is
the key to creating a general artificial intelligence - That is, the next major

advancement in civilization foretold by many a sci-fi novel.

This project
While transfer learning has been long accepted as superior to training from scratch
for image recognition models, like our pears/bears/chairs classifier, the technique

has only recently gained traction in deep natural language processing. NLP has to do

with how

artificial intelligence analyzes linguistic data in a way that imitates a human-like

understanding of language. This project aims to explore how transfer learning

compares to training from scratch when applied to NLP models. Specifically, the

models | compare are ones that perform “sentiment analysis” - a branch of NLP
concerned with

determining the attitude a piece of text takes toward its subject. Their task is to
correctly classify thousands of IMDb movie reviews as either positive or negative. In
order for a model to be able to understand English semantics, we must train it on text

files. In this project, all models are trained on the IMDb movie review target corpus;



the only difference, in terms of transfer learning, is that half of the models start as
copies of ULMFIT - the groundbreaking open-sourced base model trained on
WikiText-103. The other half start as completely empty architectures. Hypothetically,
the pre-trained models already have a good understanding of English from extensive
training on such a large corpus. The IMDb training dataset serves to fine-tune these
models to recognize special vocabulary, such as slang or names of actors. On the
other hand, the empty models must learn English from the ground-up solely from the
IMDb dataset.

professional artistic rendering of models from ULMFiT and scratch
For both pre-trained and empty models, | will plot accuracy against dataset size in

order to observe how each type performs in situations where data is limited.

The models

Besides the amount of pretraining, another important variable that affects a model’s
accuracy is the size of its training dataset. Lacking proper data is often a problem
when training models. By creating training datasets of different sizes, | can simulate

either an abundance or lack of data, and compare the performances of pretrained and



empty models in each situation. The dataset sizes are as follows: 500, 1k, 2.5k, 5k, 10k,
and 20k texts. In the end, | have twelve models, trained by various methods, whose

accuracies | can compare.

Variables
Explanatory variables:
e Whether the model uses transfer learning
e Dataset size
o Levels: 500, 1000, 2500, 5000, 10000, or 20000 texts
Response variable:

e Model accuracy
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Data Collection Process Below are screenshots of two cells from my Google Collab
notebook. In each, I call a

function that takes a dataset and a base model as parameters, and uses them to train

a classifier model. These cells display the analytics for the scratch model trained on



500 texts, and the transfer model trained on 1000 texts respectively. It should be
noted that | don't necessarily record the highest accuracy | see, as it may have been
achieved from model overfitting. This is a way for a model to be weak, but still display

high accuracies.
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As the graph suggests, Transfer learning will consistently yield a higher accuracy than

training from scratch. It's interesting to note that the difference between the

accuracies starts out very large, at about 22%, but shrinks as more training data
becomes available. This behavior can be taken advantage of when you're trying to

train a model for a task that's so unprecedented, there's barely any training data

available. In that kind of situation, try to find any open-source model whose task is

even vaguely related that could serve as a base. This conclusion isn’t as intuitive as

this paper would

have you think; | can say from firsthand experience that a surprising amount of

long-time Al practitioners are only somewhat familiar with the technique, but not

aware of its full versatility or effectiveness. It only recently became prolificin NLP

because a coder decided to test it on a whim, not predicting that he would propel the

field into a Golden Era.

In some ways, this project could also be seen as a mini proof-of-concept for new



techniques to preserve privacy. As it stands, privacy concerns are the biggest, if not
the only socially-imposed impediment to technological advancement. While deep
learning is the new state-of-the-art, industries are kept from using it to its full
potential because of the fact that that would entail using sensitive consumer data.
However, new techniques are arising that could potentially solve this issue, with a few
of them centered on transfer learning. Take, for example, the idea of edge computing.
For this technique, we would download a base model to a mini computer that is
completely disconnected from any cloud or WiFi. Then, this privatized model could
safely be trained and fine-tuned on more sensitive data without risk of it being hacked
into or stolen. In my opinion, it's only a matter of time before the full implications of

transfer learning start making waves on the industry level.



